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Abstract: An analysis of visco-elastic mhd free convective flow and heat transfer with radiation and 

temperature dependent heat source confined between two vertical wavy walls is presented where one wall is 

isothermal and the other is adiabatic.  The equations governing the flow field and heat transfer are solved by 

perturbation technique by assuming that the flow consists of a mean part and a perturbed part as the walls are 

purely sinusoidal. Expressions for velocity, temperature, skin friction coefficients at both the walls and pressure 

drop are obtained. Expressions for the zeroth-order and first order velocity, temperature, skin-friction, heat 

transfer coefficient at the walls and pressure drop are obtained. The first order velocity, skin friction 

coefficients at both the walls and pressure drop have been presented graphically to observe the visco-elastic 

effects in combination of other flow parameters involved in the solution. 
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I. Introduction 
  Analysis of fluid over a wavy wall is widely studied because of its application in different areas such 

as transpiration, cooling of re-entry vehicles and rocket boosters, cross hatching on ablative surfaces and film 

vaporization in combustion chambers.The radiation effects play an important role when the surrounding 

temperature of a fluid is high, and this situation occurs in space technology. In such cases the investigators have 

to consider the effects of radiation and free convection. Such studies were presented by Cess [1], Arpaci [2], 

Cheng and Ozisik [3], Hasegawa et al. [4], Hossain and Takhar, [7, 8], Hossain et al. [9], Tak and Kumar [10] 

and Mohamed et al. [11] in case of steady flows. In case of unsteady flows Raptis and Perdikis [12] have studied 

the flow past an accelerated plate by solving the governing equations numerically. Raptis et al. [6] have 

investigated hydro magnetic free convection flow through   porous medium between two parallel plates. 

Ganeshan et al. [13] have analyzed the effects of radiation and free convection using Rosseland approximation 

defined in Brewster [14] for an impulsively started infinite vertical isothermal plate.  A linear analysis of 

compressible boundary layer flows over a wavy wallhas been presented by Lekoudis et al. [15]. Shankar and 

Sinha [16] have studied the Reyleigh problem for a wavy wall in detail and found that the importance of the 

waviness of the wall ceases quickly as the liquid is dragged along the wall at low Reynolds numbers, while the 

effects of viscosity are confined to a thin layer in a neighbourhood of the wall at large Reynolds numbers. 

Bordner [17] has presented the non-linear analysis of laminar boundary layer flow over a periodic wavy surface 

applying suitable orthogonal transformations to transform the wavy surface to flat one.  Bordner has found that 

some non-linear terms in the disturbance boundary layer equations are of first order if the wave amplitude and 

disturbance sub-layer thickness are comparable in magnitude. He has also found the non-linear effects to be 

confined to the thin sub-layer adjacent to the wavy surface. The effects of small amplitude wall waviness upon 

the stability of the laminar boundary layer have been studied by Lessen and Gangwani [18]. A modified slip 

boundary conditions to represent the effect of small roughness-like (slightly wavy) perturbations to an otherwise 

plane fixed wall which is acting as a boundary to steady laminar flow of a viscous fluid have been obtained by 

Tuck and Kouzoubov [19]. In all these cases the authors have taken the wavy walls to be horizontal. The free 

convective flow of a viscous incompressible fluid in porous medium between two long vertical wavy walls has 

been studied by Patidar and Purohit [20]. Vajravelu and Sastri [21] and Das and Ahmed [22] have studied the 

problem of free convective flow of a viscous incompressible fluid with heat transfer confined between a vertical 

wavy wall and a flat wall.  Sharma [23] has studied fluctuating thermal and mass diffusion on unsteady free 

convective flow past a vertical plate in slip- surface with heat source/sink and viscous dissipation.Tak and 

Kumar [24] have analysed the MHD free convection flow with viscous dissipation in a vertical wavy channel. 

Muthucumaraswamy and Chandrakala [25] have studied the radiation heat and mass transfer effects on moving 

isothermal vertical plate in the presence of chemical reaction. Nigam and Singh [26] have investigated the Heat 

transfer by Laminar flow between parallel plates under the action of transverse magnetic field. Mahdy et al. [27] 

have studied the problem of natural convection from a vertical wavy plate embedded in porous media for power 
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law fluids in presence of magnetic field. Mahdy [28] has studied the mixed convection heat and mass transfer on 

a vertical wavy plate embedded in a saturated porous media. El-Aziz [29] has studied radiation effect on the 

flow and heat transfer over an unsteady stretching sheet. Suneethaet al. [30] have analysed radiation and mass 

transfer effects on MHD free convective dissipative fluid in the presence of heat source/sink. Kumar [31] has 

studied the effect of heat transfer and radiation on a MHD free convective flow confined between two vertical 

wavy walls. Basu et al. [32] have investigated radiation and mass transfer effects on transient free convection 

flow of dissipative fluid past semi-infinite vertical plate with uniform heat and mass flux. Reddy and Reddy [33] 

have analysed mass transfer and heat generation effects on MHD free convection flow past an inclined vertical 

surface in a porous medium. Sandeep et al. [34] have studied the effect of radiation and chemical reaction on 

transient MHD free convective flow over a vertical plate through porous media. Bala et al. [35] have analysed 

the radiation effects on MHD flow past an exponentially accelerated isothermal vertical plate with uniform mass 

diffusion in the presence of heat source. Choudhury and Das [36, 37, 38, 40, 41, 42, 43, 44, 45,] have analyzed 

some problems of physical interest in this field.39. Rao et al. [39] have investigated the chemical effects on an 

unsteady MHD free convection fluid past a semi-infinite vertical plate embedded in a porous medium with heat 

absorption.  

The constitutive equation for Walters liquid (Model B′) is 

σik = −pgik + 2η0eik − 2k0e′ik                                                                                                         (1) 

where  σ
ik
 is  the stress tensor, p is isotropic pressure, g

ik 
is  the metric tensor of a fixed co-ordinate system x

i
, v

i
 

is the velocity vector, the contravariant form of e′
ik

 is given by 

e′ik =
∂eik

∂t
+ vm eik ,m− vi ,m eim − vi ,m emk                                                                         (2) 

It is the convected derivative of the deformation rate tensor e
ik
 defined by 

2e
ik
 = v

i
,k +v

k
,i                                                                                                                      (3)   

Here η0 is the limiting viscosity at the small rate of shear which is given by  

η0 =  N τ dτ  and   k0
∞

0
=  τN τ dτ

∞

0
                                                                                          (4)  

N(τ) being the relaxation spectrum as introduced by Walter  [46, 47]. This idealized model is a valid 

approximation of Walters liquid (Model B′) taking very short memories into account so that terms involving 

 τn∞

0
N τ dτ,    n ≥ 2                                                                                                        (5)                                                                                                                                                            

have been neglected. 

 

II. Mathematical Formulation 

  The MHD flow of an electrically conducting visco-elastic fluid characterized by of Walters liquid 

(Model B′) confined between two vertical wavy walls in presence of a transverse magnetic field, radiation and 

temperature dependent heat source is considered. The x-axis is taken vertically upwards along the center of the 

channel and y-axis perpendicular to it. The wavy walls are represented by  y = ±L + εcos(λx) where, ε ≪ 1 

one of which is assumed to be isothermal and the other to be   adiabatic. 

The governing equations of the flow field are: 

 
∂u 

∂x 
+

∂v 

∂y 
= 0                                                                                                                                    (6) 

u 
∂u 

∂x 
+ v 

∂u 

∂y 
= −

1

ρ

∂P 

∂x 
+ ν  

∂2u 

∂x 2 +
∂2u 

∂y 2 −
K0

ρ
 u 

∂3u 

∂x 3 + u 
∂3u 

∂x ∂y 2 + v 
∂3u 

∂y ∂x 2 + v 
∂3u 

∂y 3 − 3
∂u 

∂x 

∂2u 

∂x 2 −  
∂v 

∂y 

∂2u 

∂y 2 −
∂u 

∂y 

∂2v 

∂x 2 −

                          ∂u∂y∂2u∂x∂y−2∂v∂x∂2u∂x∂y+gβT−Te−σμe2H02ρu                                        
(7)                       

u 
∂v 

∂x 
+ v 

∂v 

∂y 
= −

1

ρ

∂P 

∂y 
+ ν  

∂2v 

∂x 2 +
∂2v 

∂y 2 −
K0

ρ
 u 

∂3v 

∂x 3 + u 
∂3v 

∂x ∂y 2 + v 
∂3v 

∂y ∂x 2 + v 
∂3v 

∂y 3 −
∂u 

∂x 

∂2v 

∂x 2 −   
∂v 

∂x 

∂2u 

∂y 2 −
∂v 

∂x 

∂2v 

∂x ∂y 
−

                        3∂v∂y∂2v∂y2−2∂u∂y∂2v∂x∂y                                                                                         
(8)                          
   

ρCp  u 
∂T 

∂x 
+ v 

∂T 

∂y 
 = k  

∂2T 

∂x 2 +
∂2T 

∂y 2 −  
∂qx 

r

∂x 
−

∂qy 
r

∂y 
+ Q  T e − T                                                             (9)        

where ν =
η0

ρ
 .  

The boundary conditions are 

u = 0, v = 0, T = T 0   at  y = −L + ε cosλ x   

u = 0, v = 0,   
∂T 

∂y 
= 0   at  y = L + ε cosλ x                                                                         (10)        

We assume the Rosseland approximation (Brewstar [14]) for radiative heat flux, which leads to  

qx 
r = −

4σ1

3k 

∂T 4

∂x 
,    qy 

r = −
4σ1

3k 

∂T 4

∂y 
                                                                                      (11)     

where  σ1  is the Stefan-Boltzmann constant and k  is the mean absorption coefficient. 
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Taylor series expansion of T 4 about T e  , after neglecting higher order terms , is given by 

T 4 = 4T e
3

T − 3T e
4
                                                                                                               (12)        

We now introduce the following non-dimensional quantities: 

Gr =
gβL3 T 0−T e  

ν2   is the Grashoff Number, 

M2 =
σμ2H0

2L2

ρν
  is the Hartmann Number, 

Pr =
η0Cp

κ
     is the Prandtl Number, 

x =
x 

L
, y =

y 

L
, u =

Lu 

ν
, v =

Lv 

ν
, P =

P L2

ρν2 , θ =
T −T e

T 0−T e
,α =

QL2

κ
  is the heat source parameter, 

λ = λ L, ε =
ε 

L
  is the non-dimensional amplitude ratio. 

The non-dimensional form of equations (6) to (9) are 

u
∂u

∂x
+ v

∂u

∂y
= −

∂P

∂x
+

∂2u

∂x2 +
∂2u

∂y2 − K1  u
∂3u

∂x3 + u
∂3u

∂x ∂y2 + v
∂3u

∂y3 + v
∂3u

∂x2 ∂y
− 3

∂u

∂x

∂2u

∂x2 −
∂v

∂y

∂2u

∂y2 −   
∂u

∂y

∂2v

∂x2 −
∂u

∂y

∂2u

∂x ∂y
−

                         2∂v∂x∂2u∂x∂y−Grθ−M2u                                                         
(13)                                

u
∂v

∂x
+ v

∂v

∂y
= −

∂P

∂y
+

∂2v

∂x2 +
∂2v

∂y2 − K1  u
∂3v

∂x3 + u
∂3v

∂x ∂y2 + v
∂3v

∂x2 ∂y
+ v

∂3v

∂y3 − 2
∂u

∂y

∂2v

∂x ∂y
−

∂v

∂x

∂2v

∂x ∂y
−   

∂v

∂x

∂2u

∂y2 −
∂u

∂x

∂2v

∂x2 −

                         3∂v∂y∂2v∂y2                                                                                  
(14)       
∂u

∂x
+

∂v

∂y
= 0                                                                                                                             (15)         

Pr  u
∂θ

∂x
+ v

∂θ

∂y
 =  1 +

4

3N
  

∂2θ

∂x2 +
∂2θ

∂y2 − αθ                                                                        (16)       

subject to the boundary conditions  

u = 0, v = 0, θ=1           on y = -1+ε cos(λx) 

u = 0, v = 0, 
∂θ

∂y
= 0,     on y = 1 +ε cos(λx)                                                                          (17)         

where  𝑁 =
3𝜅𝑘 

4𝜎1𝑇 𝑒
3  is the radiation parameter and K1= 

𝐾0

𝜌𝐿2  is the visco-elastic parameter. 

Let 𝜔 = 1 +
4

3𝑁
 so that 𝑁 → ∞ ⟹ 𝜔 → 1 and the set of equations (13) to (17) represent flow and heat transfer 

in absence of radiation. 

 

III. Method Of Solution 
Assuming that the solution consists of a mean part and a perturbed part, we apply the perturbation scheme 

𝑢 𝑥, 𝑦 = 𝑢0 𝑦 + 𝜀𝑢1 𝑥, 𝑦   
𝑣 𝑥, 𝑦 = 𝜀𝑣1 𝑥, 𝑦   
𝜃 𝑥, 𝑦 = 𝜃0 𝑦 + 𝜀𝜃1 𝑥, 𝑦   
𝑃 𝑥, 𝑦 = 𝑃0 𝑥 + 𝜀𝑃1 𝑥, 𝑦                                                                                                  (18)        

to equations (13) to (16),  where the perturbed quantities 𝑢1,𝑣1 ,𝜃1,𝑃1 are small  compared with the mean 

quantities. 

Comparing the coefficients of various powers of 𝜀 and neglecting those of second and higher powers of 𝜀 we get  
𝑑2𝑢0

𝑑𝑦2 −𝑀2𝑢0 = −𝐺𝑟𝜃0 − 𝐴                                                                                                 (19)                   

where 𝐴 = −
𝜕𝑃0

𝜕𝑥
, a constant. 

𝜔
𝑑2𝜃0

𝑑𝑦2 − 𝛼𝜃0 = 0                                                                                                                               (20)        

to the  zeroth order, and    

𝑢0
𝜕𝑢1

𝜕𝑥
+ 𝑣1

𝑑𝑢0

𝑑𝑦
= −

𝜕𝑃1

𝜕𝑥
+

𝜕2𝑢1

𝜕𝑥2 +
𝜕2𝑢1

𝜕𝑦2 − 𝐾1  𝑢0
𝜕3𝑢1

𝜕𝑥3 + 𝑢0
𝜕3𝑢1

𝜕𝑥𝜕𝑦 2 + 𝑣1
𝑑3𝑢0

𝑑𝑦3 −
𝜕𝑣1

𝜕𝑦

𝑑2𝑢0

𝑑𝑦2 −  
𝑑𝑢0

𝑑𝑦

𝜕2𝑣1

𝜕𝑥2 −
𝑑𝑢0

𝑑𝑦

𝜕2𝑢1

𝜕𝑥𝜕𝑦
 +

                                 𝐺𝑟𝜃1 −𝑀2𝑢1                                                (21)         

𝑢0
𝜕𝑣1

𝜕𝑥
= −

𝜕𝑃1

𝜕𝑦
+

𝜕2𝑣1

𝜕𝑥2 +
𝜕2𝑣1

𝜕𝑦2 − 𝐾1  𝑢0
𝜕3𝑣1

𝜕𝑥3 + 𝑢0
𝜕3𝑣1

𝜕𝑥𝜕𝑦 2 − 2
𝑑𝑢0

𝑑𝑦

𝜕2𝑣1

𝜕𝑥𝜕𝑦
−

𝜕𝑣1

𝜕𝑥

𝑑2𝑢0

𝑑𝑦2                                             (22)                                                 

𝜕𝑢1

𝜕𝑥
+

𝜕𝑣1

𝜕𝑦
= 0                                                                                                                        (23)          

𝑃𝑟  𝑢0
𝜕𝜃1

𝜕𝑥
+ 𝑣1

𝑑𝜃0

𝑑𝑦
 = 𝜔  

𝜕2𝜃1

𝜕𝑥2 +
𝜕2𝜃1

𝜕𝑦2  − 𝛼𝜃1                                                                                               (24)                             

to the first order. 

The corresponding boundary conditions are 

𝑢0 = 0,𝜃0 = 1   𝑎𝑡 𝑦 = −1  

𝑢0 = 0,
𝜕𝜃0

𝜕𝑦
= 0    𝑎𝑡 𝑦 = +1                                                                                                            (25)       
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𝑢1 = −𝑅𝑒𝑎𝑙 𝑢0
′𝑒𝑖𝜆𝑥  , 𝑣1 = 0,𝜃1 = −𝑅𝑒𝑎𝑙 𝜃0

′𝑒𝑖𝜆𝑥   𝑎𝑡 𝑦 = −1  

𝑢1 = −𝑅𝑒𝑎𝑙 𝑢0
′𝑒𝑖𝜆𝑥  , 𝑣1 = 0,

𝜕𝜃1

𝜕𝑦
= −𝑅𝑒𝑎𝑙 𝜃0

″𝑒𝑖𝜆𝑥   𝑎𝑡 𝑦 = +1                                     (26)         

where dashes denote differentiation with respect to y. 

The actual boundary conditions (17) were transformed to the mean position  𝑦 = ±1  of the walls to arrive at 

the boundary conditions (25) and (26) as is justified when 𝜀 ≪ 1  i.e. when the amplitude 𝜀 of the disturbances 

is small compared with the disturbance wavelength (Lekoudis et al.[15], Tuck et al.[19]). 

 

3.1. Solution 

Solving equations (19) and (20) we obtain  

𝑢0 = 𝐷3𝑒
𝑀𝑦 + 𝐷4𝑒

−𝑀𝑦 + 𝑑1𝑒
𝐶𝑦 + 𝑑2𝑒

−𝐶𝑦 + 𝑑3                                                                 (27)           

𝜃0 = 𝐷1𝑒
𝐶𝑦 + 𝐷2𝑒

−𝐶𝑦                                                                                                                        (28)        

To solve equations (21) to (24), we assume that 

𝑢1 = −
𝜕𝜓

𝜕𝑦
,       𝑣1 =

𝜕𝜓

𝜕𝑥
                                                                                                                      (29)       

On eliminating 𝑃1 from equations (21) and (22) and on keeping in view the equation of continuity (23), 

equations (21), (22) and (24) yield 

𝑢0𝜓𝑥𝑥𝑥 + 𝑢0𝜓𝑥𝑦𝑦 − 𝑢0
″𝜓𝑥 = 𝜓𝑥𝑥𝑥𝑥 + 𝜓𝑦𝑦𝑦𝑦 + 2𝜓𝑥𝑥𝑦𝑦 − 𝐾1 𝑢0𝜓𝑥𝑥𝑥𝑥𝑥 + 2𝑢0𝜓𝑥𝑥𝑥𝑦𝑦 + 𝑢0𝜓𝑥𝑦𝑦𝑦𝑦 −

                                                       𝑢0𝑖𝑣𝜓𝑥− 𝐺𝑟𝜃1,𝑦−𝑀2𝜓𝑦𝑦                                                               (30)            

𝑃𝒓 𝑢0𝜃1,𝑥 + 𝜓𝑥𝜃0
′ = 𝜔 𝜃1,𝑥𝑥 + 𝜃1,𝑦𝑦  − 𝛼𝜃1                                                                  (31)       

Keeping in view (26), we assume general solutions for 𝜓 𝑎𝑛𝑑 𝜃1 as follows: 

𝜓 𝑥, 𝑦 = 𝑅𝑒𝑎𝑙   𝜓𝑟𝜆
𝑟  𝑟  𝑒𝑖𝜆𝑥                                                                                                         (32)      

𝜃1 𝑥, 𝑦 = 𝑅𝑒𝑎𝑙   𝑡𝑟𝜆
𝑟 𝑟 𝑒𝑖𝜆𝑥                                                                                                           (33)                                             

Using (32) and (33) in equations (30) and (31) and equating coefficients of various powers of λ and neglecting 

those of second and higher powers of λ, we get the following sets of equations: 

 

 

 

3.2. Zeroth order equations 

𝜓0
𝑖𝑣 −𝑀2𝜓0

″ = 𝐺𝑟𝑡0
′                                                                                                            (34)                      

𝜔𝑡0
″ − 𝛼𝑡0 = 0                                                                                                                     (35)                          

 

3.3. First order equations 

𝜓1
𝑖𝑣 −𝑀2𝜓1

″ = 𝑖𝐾1 𝑢0𝜓0
𝑖𝑣 − 𝑢0

𝑖𝑣𝜓0 + 𝑖 𝑢0𝜓0
″ − 𝑢0

″𝜓0 + 𝐺𝑟𝑡1
′                                                         (36)                               

𝜔𝑡1
″ − 𝛼𝑡1 = 𝑖𝑃𝑟 𝑢0𝑡0 + 𝜃0

′𝜓0                                                                                       (37)       

The corresponding boundary conditions are 

𝜓0 ±1 = 0,𝜓0
′ ±1 = 𝑢0

′ ±1   
𝑡0 −1 = −𝜃0

′ −1 , 𝑡0
′ +1 = −𝜃0

″  +1                                                                          (38)         

𝜓1
′ ±1 = 0,   𝜓1 ±1 = 0  

𝑡1
′ −1 = 0,  𝑡1

′ +1 = 0                                                                                                   (39)                   

The solutions of equations (34) to 37) are 

𝜓0 = 𝐷7 + 𝐷8𝑦 + 𝐷9𝑒
𝑀𝑦 + 𝐷10𝑒

−𝑀𝑦 + 𝑑4𝑒
𝐶𝑦 + 𝑑5𝑒

−𝐶𝑦                                                   (40)                    

𝑡0 = 𝐷5𝑒
𝐶𝑦 + 𝐷6𝑒

−𝐶𝑦                                                                                                (41)         

𝜓1 = 𝐷13 + 𝐷14𝑦 + 𝐷15𝑒
𝑀𝑦 + 𝐷16𝑒

−𝑀𝑦 + 𝑑17𝑒
 𝑀+𝐶 𝑦 + 𝑑18𝑒

 𝑀−𝐶 𝑦 + 𝑑19𝑒
 𝐶−𝑀 𝑦 + 𝑑20𝑒

− 𝐶+𝑀 𝑦  

          +𝑑25𝑒
2𝐶𝑦 + 𝑑26𝑒

−2𝐶𝑦 + 𝑑27𝑦
2𝑒𝑀𝑦 + 𝑑29𝑦

2𝑒−𝑀𝑦 + 𝑑30𝑦𝑒
𝑀𝑦 + 𝑑31𝑦𝑒

−𝑀𝑦 + 𝑑32𝑒
𝐶𝑦 + 𝑑33𝑒

−𝐶𝑦 +
          𝑑34𝑦𝑒𝐶𝑦+𝑑35𝑦𝑒−𝐶𝑦+𝑑36𝑦2𝑒𝐶𝑦+𝑑37𝑦2𝑒−𝐶𝑦                                                                                  (42) 

𝑡1 = 𝐷11𝑒
𝐶𝑦 + 𝐷12𝑒

−𝐶𝑦 + 𝑑6𝑒
 𝐶+𝑀 𝑦 + 𝑑7𝑒

 𝑀−𝐶 𝑦 + 𝑑8𝑒
 𝐶−𝑀 𝑦 + 𝑑9𝑒

− 𝑀+𝐶 𝑦+𝑑10𝑒
2𝐶𝑦 + 𝑑11𝑒

−2𝐶𝑦 +

         𝑑12𝑦𝑒
𝐶𝑦 + 𝑑13𝑦𝑒

−𝐶𝑦 + 𝑑14𝑒
𝐶𝑦  𝑦2 −

𝑦

𝐶
 + 𝑑15𝑒

−𝐶𝑦  𝑦2 +
𝑦

𝐶
 + 𝑑16                                                   (43) 

From (29), (32), (33) and (40) to (43) and retaining up to the first power of 𝜆 in (29), we obtain the expressions 

for 𝑢1, 𝑣1  𝑎𝑛𝑑 𝜃1 as follows: 

𝑢1 = −𝜓0𝑟
′𝑐𝑜𝑠𝜆𝑥 + 𝜆𝜓1𝑖

′𝑠𝑖𝑛𝜆𝑥                                                                                (44)         

𝑣1 = −𝜆𝜓0𝑟𝑠𝑖𝑛𝜆𝑥 − 𝜆2𝜓1𝑖𝑐𝑜𝑠𝜆𝑥                                                                                     (45)                               

𝜃1 = 𝑡0𝑟𝑐𝑜𝑠𝜆𝑥 − 𝜆𝑡1𝑖𝑠𝑖𝑛𝜆𝑥                                                                                               (46)                             

where 𝜓0𝑟=Real 𝜓0, 𝜓1𝑖=Imag 𝜓1, 𝑡0𝑟=Real 𝑡0, 𝑡1𝑖=Imag 𝑡1. 

 

3.4. Skin friction 

The non-dimensional skin friction coefficient 𝜎−1on the wavy walls 𝑦 = −1 + 𝜀 𝑐𝑜𝑠 𝜆𝑥  is given by  
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𝜎−1 =  𝑢′0 + 𝑅𝑒𝜀𝑒𝑖𝜆𝑥 [𝑢″
0 −  𝜓″

0
+ 𝜆𝜓″

1
 − 𝜆2 𝜓0 + 𝜓1 + 𝐾1 𝑖𝜆𝑢0 𝜓

″
0

+ 𝜆𝜓″
1
 + 𝑖𝜆3𝑢0 𝜓0 + 𝜆𝜓1 −

             𝑖𝜆𝑢″0𝜓0+𝜆𝜓1+2𝑢′0𝜓′0+𝜆𝜓′1]𝑦=−1                                                                               (47)                                                                          

The non-dimensional skin friction coefficient 𝜎1on the wavy walls  𝑦 = 1 + 𝜀 𝑐𝑜𝑠 𝜆𝑥  is given by  

       𝜎1 =  𝑢′0 + 𝑅𝑒𝜀𝑒𝑖𝜆𝑥 [𝑢″
0 −  𝜓″

0
+ 𝜆𝜓″

1
 − 𝜆2 𝜓0 + 𝜓1 + 𝐾1 𝑖𝜆𝑢0 𝜓

″
0

+ 𝜆𝜓″
1
 +  𝑖𝜆3𝑢0 𝜓0 +

                 𝜆𝜓1−𝑖𝜆𝑢″0𝜓0+𝜆𝜓1+2𝑢′0𝜓′0+𝜆𝜓′1]𝑦=1                                                          (48)                                                 

 

3.5. Pressure drop 

Using equations (18), (21), (29), (32) and (33) we obtain the fluid pressure at any point (x,y) as   

𝑃 (𝑥, 𝑦) = -K′x +Re [ { ε i e
iλx

)}/λ] Z(y) +L                                                                                     (49)                               

where L and K' are arbitrary constants and  

Z y =  ψ0
‴ + λψ1

‴  − λ2 ψ0
′ + λψ1

′ − iλ −u0
′ ψ0 + λψ1 + u0 ψ0

′ + λψ1
′  −  Gr t0 + λt1 −

               M2 ψ0 + λψ1 + iλK1 −u0 ψ0
‴ + λψ1

‴  + λ2u0 ψ0
′ + λψ1

′ +  u0
‴  ψ0 + λψ1 − u0

″ ψ0
′ +

               λψ1′+ λ2u0′ψ0+λψ1+u0′ψ0″+λψ1″                                                  (50)                                 

The pressure drop P  indicates the difference between the pressure at any point y in the flow field and that at the 

adiabatic wall y=1, with x- fixed and is given by 

P = P  x, y  -  P (x, 1) 

   = 
ε

λ
Re [i e

iλx
{Z(y)-Z(1)}]                                                                                                 (51)                         

The constants are obtained but not given here due to brevity. 

 

IV. Discussions 
The purpose of this study is to bring out the effects of visco-elastic parameter on the free convective 

flow confined between two long vertical wavy walls as the effects of other flow parameters have been discussed 

by Kumar [31]. The visco-elastic effect is exhibited through the non-dimensional parameter K1. The 

corresponding results for Newtonian fluid are obtained by setting K1=0 and it is worth mentioning that these 

results show conformity with that of Kumar [31].  

The expressions for u1, v1, and θ1 are the first-order solutions or the disturbed parts due to waviness of 

the walls. The expression for the total velocity field (u, v) and the total temperature field θ may be obtained from 

(18) by using (27), (28) and from (44) to (46). The profiles of u1 and v1 are depicted against y in the figures 1, 2, 

3 and 4, 5, 6 respectively to observe the visco-elastic effects. It is to be noted that the zeroth order quantities u0, 

v0 and θ0 are not affected by the visco elastic parameter K1. The numerical calculations are to be carried out for 

λx=π/4. This means that at the neighbourhood of λx=π/4.  

It is evident from figure-1 that the first order vertical component of velocity profile u1 increases  with 

the increase of the visco-elastic parameter K1 upto the central region of the channel and then decreases  with no 

effect on the wall y=1 in comparison to that in Newtonian case. An opposite nature in the velocity profile u1 is 

also observed from figure-1 for positive and negative values of the Grashof number Gr.  

. 

 
Fig-1: M=.5; λ=.01; λx=π/4; Pr=3; N=3; Gr=20; Gr= -20; α=10. 
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 Figure-2 reveals that the velocity profile u1 has a decreasing trend near the isothermal wall y=-1 and an 

increasing trend near the adiabatic wall y=1 with the increase in Grashof number Gr in both Newtonian and non-

Newtonian cases. 

 

 
Fig-2: M=.5; λ =.01; λx= π /4; Pr =3; N=3; Gr=20; Gr=15; α =10. 

 

 Figure- 3 shows that the velocity profile u1 increases with the increase of the visco-elastic parameter K1 

upto the central region of the channel and then decreases  with no effect on the wall y=1irrespective of the value 

of the heat source parameter α. But the nature of the velocity profile u1changes remarkably with the increase of 

the heat source parameter α in both Newtonian and non-Newtonian cases. 

 

 
Fig-3: M=.5; λ =.01; λx= π /4; Pr =3; N=3; Gr=20; α =10; α =5; 

 

 Figures 4, 5 and 6 explain the nature of the horizontal component of the velocity profile v1.  It is 

observed from these figures that the velocity profile v1 enhances with the visco-elastic parameter K1 in 

comparison to that in Newtonian fluid flow. A U-turn is observed in the parabolic nature of the velocity profile 

v1 in the cases of heated (Gr<0) and cooled (Gr>0) walls from figure-4. Figure-5 reveals a decreasing trend in 

the vertical component of velocity profile v1 with the increase of Grashof number Gr in both Newtonian and 

non-Newtonian cases. An increasing trend in the vertical component of velocity profile v1 with the increase of 

heat source parameter α is also observed from figure-6 in both Newtonian and non-Newtonian cases.   
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Fig-4: M=.5; λ =.01; λx= π /4; Pr =3; N=3; Gr=20; Gr=-20; α =10. 

 

 
Fig-5: M=.5; λ =.01; λx= π /4; Pr =3; N=3; Gr=20; Gr=15; α =10. 
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Fig-6: M=.5; λ =.01; λx= π /4; Pr =3; N=3; Gr=20; α =10; α =5. 

 

 Figures 7 and 8 explain the behavior of skin friction coefficient on the wavy walls y=-1 and y=1 

respectively. It is evident from figure-7 that the skin friction coefficient on the isothermal wall y=-1 has an 

enhancing trend with the increasing of the visco-elastic parameter K1 in comparison to that of Newtonian fluid 

flow for cooled wall (Gr>0) but an opposite trend is observed for heated wall (Gr<0). 

 It is clear from figure-8 that the skin friction coefficient on the adiabatic wall y=1 has an decreasing 

trend with the increase of the visco-elastic parameter K1 in comparison to that of Newtonian fluid flow for 

cooled wall (Gr>0) but an opposite trend is observed for heated wall (Gr<0). 

 

 
Fig-7: M=.5; λ =.01; λx= π /4; Pr =3; N=3; Gr=20; Gr=-20; y=-1; ε=.01. 
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Fig-8: M=.5; λ =.01; λx= π /4; Pr =3; N=3; Gr=20; Gr=-20; y=1; ε=.01. 

 

 Figure-9 describes the effect of visco-elasticity on the pressure drop. It shows that the pressure drop 

increases with the increase of the visco-elastic parameter K1 in both cooled (Gr>0) and heated (Gr<0) walls in 

the central region of the channel. 

 
Fig-9: M=.5; λ =.01; λx= π /4; Pr =3; N=3; Gr=20; Gr=-20; ε=.01; α=10. 

 

V. Conclusion 
  An analysis of the visco-elastic effects on free convective flow confined between two long vertical 

wavy walls has been presented for different values of visco-elastic parameter K1 in combination of other flow 

parameters.   

 From this study, we make the following conclusions: 

 The velocity field is considerably affected by the variation of visco-elastic parameter. 

 A mixed type of effect of visco-elasticity is observed in the velocity component along the channel. 

 The velocity component across the channel enhances with the rising of the visco-elasticity.   
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 The profile of pressure drop enhances by the rising of visco-elastic parameter in    

comparison with  Newtonian fluid flow.  

 The skin friction coefficient against the heat source/sink parameter increases with the increase of the visco-

elastic parameter at the isothermal wall when it is cooled but an opposite trend is observed for heated wall 

in comparison to that in Newtonian case.  

 The skin friction coefficient against the heat source/sink parameter decreases with the increase of the visco-

elastic parameter at the adiabatic wall when it is cooled but an opposite trend is observed for heated wall in 

comparison to that in Newtonian case. 

 The effect of visco-elastic parameter is not prominent in the temperature field. 
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